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Online search engine has been widely regarded as the most convenient approach for information acquisition.

Indeed, the intensive information-seeking behaviors of search engine users make it possible to exploit search

engine queries as effective “crowd sensors” for event monitoring. While some researchers have investigated

the feasibility of using search engine queries for coarse-grained event analysis, the capability of search engine

queries for real-time event detection has been largely neglected. To this end, in this article, we introduce a

large-scale and systematic study on exploiting real-time search engine queries for outbreak event detection,

with a focus on earthquake rapid reporting. In particular, we propose a realistic system of real-time earth-

quake detection throughmonitoring millions of queries related to earthquakes from a dominant online search

engine in China. Specifically, we first investigate a large set of queries for selecting the representative queries

that are highly correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected

queries, we design a novel machine learning–enhanced two-stage burst detection approach for detecting

earthquake events. Meanwhile, the location of an earthquake epicenter can be accurately estimated based

on the spatial-temporal distribution of search engine queries. Finally, through the extensive comparison with

earthquake catalogs from China Earthquake Networks Center, 2015, the detection precision of our system can

achieve 87.9%, and the accuracy of location estimation (province level) is 95.7%. In particular, 50% of success-

fully detected results can be found within 62 s after earthquake, and 50% of successful locations can be found

within 25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were felt

by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile, revealed many

interesting findings, such as the typical query patterns of earthquake rumor and regular memorial events.

Based on these results, our system can timely feed back information to the search engine users according to

various cases and accelerate the information release of felt earthquakes.
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1 INTRODUCTION

With the rapid development of the Internet, online search engine has been widely regarded as
the most convenient, powerful, and popular approach for information acquisition all over the
world [72]. For example, as of the first half of 2019, there are 694.7 million regular search engine
users in China, covering more than 81.3% of netizens [18]. Intuitively, after a social event occurs,
most peoplewho are involved or interested in it will seek relevant information (e.g., news or official
websites) through online search engines as early as possible. For example, as shown in Figure 1,
earthquake-related queries will increase rapidly immediately after an earthquake occurs, which in-
dicates that a large number of users would rapidly search relevant queries just after the earthquake.
Such collaborative behavior of search engine users makes it possible to exploit search queries as
effective “crowd sensors” for event monitoring. In the past decade, while some researchers have
investigated the feasibility of using search engine queries for coarse-grained event analysis (e.g.,
event forecast or trend analysis [12, 31]), the capability of using search engine queries for real-time
event detection has been largely neglected [16].
To this end, in this article, we introduce a large-scale and systematic study on exploiting real-

time search engine queries for outbreak event detection, with a focus on earthquake rapid re-

porting (ERR), which is a critically important practice of emergencymanagement and can largely
reduce the damages, injuries and property loss caused by the earthquakes [37]. Indeed, like the
example shown in Figure 1, by monitoring the number of search engine queries with keywords
related to the earthquake, it is possible to detect the earthquake event in a very efficient manner.
Different from traditional ERR systems, which mainly based on the seismic observation networks,
the “crowd sensors” of search engine queries can monitor the impact of earthquakes from the per-
spective of people’s feelings. Therefore, with the help of search engine queries, we can not only
detect earthquake events but also alleviate the public concerns from people who feel the shaking
and refute rumors. Indeed, our search engine-based detection method and the traditional seismic
monitoring methods are mutually reinforcing. Although some seismic monitoring systems can
rapidly detect and locate earthquakes using the closest seismic stations and send out warnings
to people before an earthquake S-wave reaches, these systems require significant investment and
high maintenance cost, and therefore, can only be implemented in a few regions of the world [65,
66]. For many earthquakes worldwide, even a detection within several tens of seconds would be a
useful acceleration of current practice [65]. Rapid publication of earthquake information is essen-
tial for both the public and authorities and can contribute to more efficient emergency manage-
ment. Therefore, our search-query-based method can increase the scope and speed of earthquake
detection in a cost-effective way.
Specifically, we propose a realistic query-based data-driven ERR system named Q-ERR, that

achieves real-time earthquake detection through monitoring millions of queries related to earth-
quakes from a dominant online search engine in China. To avoid noise and enhance efficiency, we
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Fig. 1. An example of real-time search engine queries during an earthquake.

first investigate a large set of queries before and after earthquake events, and select the represen-
tative queries that are highly correlated with the outbreak of earthquakes. In particular, due to the
short-text characteristic and the autocompletionmechanism of search engines [29, 51], the content
of each query can be directly regarded as a “word,” instead of additional segmentation process, pre-
venting the loss of semantics. Then, based on the real-time streams of selected queries, we design
a novel machine-learning-enhanced two-stage burst detection approach for detecting earthquake
events. In the first stage, to avoid the noisy queries, we design aMulti-intervalDerivative (MID)-
based detection algorithm for rapidly capturing the burst of time series with noise resistance. On
the second stage, a delicately designed machine learning classifier namedMulti-level Attention

Query (MAQ) network, is further conducted on the preliminary results obtained from the first
stage, to reduce the dependence of threshold-tuning and improve the precision and robustness of
earthquake detection. Moreover, based on the detection results and the spatial-temporal distribu-
tion of queries, the province-level location and the coordinate-level location of earthquake can be
accurately estimated through various statistical methods.
Finally, to validate the effectiveness and efficiency of our earthquake detection system, we have

conducted extensive experiments based on two official earthquake catalogs from theChina Earth-
quake Networks Center (CENC). The first is the ERR catalog, which only contains earthquakes
that were publicly released, according to some pre-defined screening rules (e.g., magnitude). An-
other is the full catalog, which includes all earthquakes that were detected by CENC. Through the
comprehensive analysis of experimental results, the detection Precision of our system can achieve
87.9%, and the Accuracy of location estimation (province-level) is 95.7%. In particular, 50% of suc-
cessfully detected results can be found within 62 s, and 50% of successful locations are within
25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were
felt by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile,
revealed many interesting findings such as the typical query patterns of earthquake rumor and
regular memorial events. Based on these results, our system can timely feedback information to
the search engine users according to various cases, and accelerate the information release of felt
earthquakes. Specifically, the contributions of this article can be summarized as follows:

• To the best of our knowledge, this is the first study of exploiting real-time search engine
queries for building an effective ERR system. We believe this study can provide a novel
perspective on exploiting alternative data for addressing social good problems.

• We propose a novel machine learning-enhanced two-stage approach for detecting earth-
quake events, which contains a MID-based detection algorithm for rapidly capturing the
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burst of time series with noise resistance and a carefully-designed MAQ network for en-
hancing the classification of search query burst.

• We conduct extensive experiments on large-scale search engine query data and earthquake
catalogs, which not only clearly validate the effectiveness of our approach but also reveal
many interesting findings.

• Our data-driven ERR system, namely, Q-ERR, can enhance the information transparency
between official emergencymanagement organizations and search engine users during out-
break events, and thus avoid the public panic and rumors.

2 RELATEDWORK

The related work of this article can be grouped into three categories, namely, event detection using
search engine queries, earthquake detection through social media, and time series classification.

Event Detection Using Search Engine Queries. Online search engine is one of the most popu-
lar information retrieval systems in public [45]. Recently, with the improvement of search perfor-
mance and the search experience, people’s search behavior has been more and more abundant [11,
41–43, 46, 75, 79, 80]. Meanwhile, the search behavior can reflect many information of users [4,
67, 69], e.g., event, location, viewpoint. Therefore, what the public searched can reflect what hap-
pened in the real world [31]. In previous studies, search engine queries are proven to be useful for
event forecast and trend analysis. For example, researchers analyzed the large-scale search engine
queries from Google to track the weekly influenza activity in each region of the United States [31].
Then, researchers in Reference [17] described one search engine queries-based methodology to
Dengue fever surveillance. Similarly, authors in Reference [74] proposed to use a combination of
influenza case counts and real-time search queries formodeling and detecting the current influenza
activity based on the search index database in China [16]. Another work [38] applied the search
index database in Dengue fever surveillance with generalized additive models (GAM). Except
for the disease surveillance, some works also attempted to apply search engine queries into other
application fields, e.g., tracking the popularity [9] and stock market prediction [12]. However, in
these works, the real-time nature of search engine queries has been largely neglected, which has
a high potential for achieving real-time event detection and the context analyzation. After a social
event occurs, people who are involved or interested in always would like to seek relevant informa-
tion through online search engines as early as possible. To this end, in this article, we introduce a
large-scale and systematic study on exploiting real-time search engine queries for outbreak event
detection, with a focus on earthquake rapid reporting.

Earthquake Detection through Social Media. Social Media has been regarded as an effective,
sophisticated and powerful way for gathering personal preferences, tastes, and activities of users
in the context of Web 2.0 [60]. In References [61, 62], researchers attempted to design an algo-
rithm for the real-time detection of earthquakes and hurricanes in Japan based on the information
generated by Twitter users. This work has demonstrated that Tweets could be used for predict-
ing earthquake moments and estimating the epicenters after an earthquake occurs. After that, a
number of efforts were made on investigating Twitter for assisting earthquake detection [7, 8, 24,
28, 54, 59]. For example, an earthquake detection system, namely, Earthquake Alert and Report

System (EARS), has been designed to detect earthquakes and improve crisis response in Italy [7,
8]. EARS integrates both data mining and natural language processing techniques to select mean-
ingful and comprehensive sets of tweets and applies a burst detection algorithm for promptly
identifying the outbreaks of earthquakes. In particular, the detected events can be automatically
broadcasted via a dedicated Twitter account as well as email notifications. In addition, some papers
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exploited the social media in crisis-affected community [48], event detection on Twitter [56], and
location extraction from social media [47].
Indeed, the effectiveness of earthquake detection based on the Twitter data stream has been

widely validated, i.e., the feasibility of using the public information on the Internet for event de-
tection. However, Twitter still has some drawbacks for real-time emergency monitoring and man-
agement. Specifically, first, the data of Twitter usually contain a large number of noise messages,
which are irrelevant to earthquake event, even if they contain relevant keywords (e.g., “earth-
quake,” “shake”). Therefore, it is indeed difficult to select representative tweets that are relevant
to earthquakes. Second, since Twitter is a kind of microblogging service [5, 33], users of Twitter
have a delay in sharing real-world events on their social networks, which hampers the timeliness
of real-time earthquake detection that usually has high requirement on response speed. Last, the
users of Twitter may not highly cover the targeted users who feel the shaking of earthquakes. Be-
sides Twitter, some Apps and websites [13, 55] can also help to collect felt reports for earthquake
detection. In Reference [65], researchers combined the results of various crowdsourced earthquake
detection with traditional seismic data, and proposed that the crowdsourced earthquake detection
can significantly accelerate the publication of locations for felt earthquakes. However, the user
number of these approaches is usually limited, e.g., LastQuake APP only has around 500,000 in-
stalls on Google Android alone [1]. The related Twitter handle only has around 143,000 followers
[2]. However, the number of search engine users is huge, e.g., there are 694.7 million users in China
alone [18]. Differently, in this article, we propose to exploit the queries of search engines, the most
widely used approach to information seeking, for real-time earthquake detection. Intuitively, when
an earthquake occurs, people who feel the shaking or heard the news always would like to seek
relevant information through online search engines as early as possible. Meanwhile, we design
a realistic Q-ERR system that contains two novel algorithms for real-time event detection and
locating based on search engine queries.

Time Series Classification. Time series classification is an important and challenging problem
and has a broad range of applications [26]. It has been widely studied by researchers for a long
time, there are many machine learning methods used for time series problem, such as Bayes clas-
sifier [68], random forest [39, 71], support vector machine [23]. Recently, due to the powerful
fitting and generalization ability, neural network methods are widely used for a variety of time
series problems [21, 26, 63, 76]. One of the representative methods is Long Short-term Mem-

ory (LSTM) [34], which controls the memory of long and short-term information in time series
through gate units and hidden states. This method and its variants are widely used in many time
series problems [27, 30, 40]. Then, due to the powerful pattern extraction capability, Convolu-
tional Neural Network (CNN)-based methods have been applied to various time series prob-
lems [19, 35, 78]. With the development of Natural Language Processing (NLP) model, the
Transformer-based algorithms have been proposed, which show the potential of attention mecha-
nism in sequence problems [22, 58, 64, 70]. In this article, considering the unbalanced distribution
of information around the burst of events in search engine queries, we propose a novel classifica-
tion model based on multi-level attention mechanism.

3 DATA DESCRIPTION

In this section, we describe our datasets, which consist of one year of search engine queries and
two earthquake catalogs.

Search Engine Queries. This dataset contains search engine queries submitted by users from a
major search engine in China during the full year of 2015. Each query in this dataset consists of
three parts, i.e., time, location (province label and GPS coordinates), and query text. Table 1 shows
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Table 1. Examples of the Search EngineQueries and the Earthquake Catalogs in Our Datasets

Time Location Query Text

Search Queries

2015-09-23 02:16:05 Sichuan (32.43, 105.83) “earthquake”

2015-09-23 02:16:05 Sichuan (32.38, 105.73) “just earthquake”

2015-09-23 02:16:06 Sichuan (32.58, 105.24) “earthquake administration of China”

... ... ...

Time Location Magnitude

ERR Catalog

2015-09-21 18:49:47 Sichuan (31.29, 103.50) 3.1

2015-09-22 14:01:11 Yunnan (27.69, 100.29) 3.1

2015-09-23 02:01:35 Sichuan (32.61, 105.38) 4.0

... ... ...

Full Catalog

2015-09-23 01:25:16 Sichuan (27.95, 101.38) 0.2

2015-09-23 02:01:36 Sichuan (32.61, 105.38) 4.1

2015-09-23 02:13:12 Xinjiang (37.58, 77.84) 0.9

... ... ...

Fig. 2. The histograms of search queries around three earthquakes.

some examples of search queries. Figure 2 shows some histograms of search queries around three
earthquakes. Specifically, Figure 2(a) is the time distribution of search engine queries around the
M2.4 earthquake in Tianjin (2015-08-12 23:34:30). The “0 s” on the abscissa is the occurrence time
of the earthquake. Figure 2(d) is the location distribution of search queries after the same earth-
quake. The “0 km” on the abscissa is the epicenter of the earthquake. It can be seen that even some
earthquakes have low magnitude (i.e., <M3.0), people can feel the earthquake and search for re-
lated information immediately, and these users are around the epicenter of the earthquake. These
observations not only reflect people’s urgent information demand after the earthquake but also
inspire us to detect and locate the earthquake by search engine queries data. Then, Figures 2(b) and
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Fig. 3. The magnitude distribution of different earthquake catalogs.

2(e) show corresponding distributions of M3.1 earthquake in Yunnan (2015-07-06 11:26:30). There
was no obvious rapid increase in related search queries after the earthquake, however, the location
distribution shows the queries were searched around the epicenter. We will highlight these kinds
of earthquakes in Section 4.2. It can be seen that the search engine queries can rapidly reflect the
people’s feeling of earthquakes, which are difficult to be measured by magnitude or other classical
indicators. Figures 2(c) and 2(f) show corresponding distributions of M4.3 earthquake in Liaoning
(2015-08-04 12:25:00). Figure 2(f) contains three peaks, which indicate the large impact across more
than three towns of the earthquake. In general, search engine queries can reflect people’s feelings
of earthquakes in time, and search engine can be used as an earthquake monitor which is densely
deployed in residential areas. These characteristics can greatly make up the deficiencies of tradi-
tional seismic networks, such as the lack of information on people’s feeling about the earthquake,
the significant investment and high maintenance cost of dense seismic networks, and the difficulty
of deploying stations in residential areas.

Earthquake Catalogs. We collected two kinds of earthquake catalogs during the full year of
2015 from CENC. The first is the official ERR catalog and the second is the full catalog. Specifi-
cally, the difference between the two catalogs is that the ERR catalog only contains earthquake
records that satisfy the predefined rules for public release (e.g., magnitude > M3.0, etc.). To keep
consistency with our search engine queries, which were mainly submitted from China, here we
only consider the earthquakes occurred within China. As a result, there are 36,718 and 684 earth-
quake records in the full catalog and ERR catalog, respectively. However, people in China also can
perceive some earthquakes with high magnitude occurred around China. To cover all earthquakes
that can be felt in China, we expand the full catalog and ERR catalog by including the earthquakes
around China and collected two expanded catalogs, namely, expanded full catalog and expanded
ERR catalog. Specifically, both of the catalogs contain earthquakes occurred within and around
China (latitudes: 0◦ ∼ 60◦ N, longitudes: 65◦ ∼ 145◦ E). As a result, the expanded full catalog and
the expanded ERR catalog contain 38,923 earthquake records and 860 earthquake records, respec-
tively. These different earthquake catalogs can be used to verify the different performances of our
Q-ERR system. In all of the catalogs, each earthquake record consists of three parts, namely, time,
location (province label and coordinate level) and magnitude. Table 1 also shows some examples
of earthquake records in two catalogs. In particular, we can find that there are many earthquakes
with small magnitude only recorded in the full catalog, which means they were not officially re-
leased to the public. Figure 3 shows the difference of magnitude distribution between two catalogs.
Specifically, there are 683 (99.9%) earthquakes beyond M2.0 and 619 (90.5%) beyond M3.0 in the
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Fig. 4. The framework overview of our search engine queries-based Q-ERR system.

Table 2. Some Important Mathematical Notations

Symbol Description
ti The ith time stamp
Δt The basic time interval between two adjacent time stamps
fi The frequency within the ith time interval
Qkey The query set contains the same representative query text, key
SΔt The time series counted from Qkey with time interval, Δt
int One derivative interval of multi-interval set, I
dinti The int interval derivative value of frequency on ti
f inti The characteristic function value of dinti

thint The trigger threshold of int interval
Tmid The detection results of MID detector
k The number of representative queries
R The final detection results of MAQ network

ERR catalog. In contrast, in the full catalog, there are 2,684 (7.3%) earthquakes beyond M2.0 and
640 (1.7%) beyond M3.0. Therefore, according to the results, we find that most of the earthquakes
with magnitude less than M3.0 were not released to the public. Indeed, such a situation is due
to the predefined rules of automatic ERR system, which are mainly based on the magnitude of
earthquakes but not the people’s feeling of ground shaking.

4 Q-ERR SYSTEM DESIGN

In this section, we will introduce the detailed design of our search engine queries-based ERR sys-
tem, i.e., Q-ERR, and the novel detection algorithms. To be specific, Figure 4 shows the framework
overview of our system. Table 2 lists some important mathematical notations of algorithms.

4.1 System Overview

As shown in Figure 4, in this system, we first select representative queries that are highly corre-
lated with the outbreak of earthquakes from all queries that were submitted by people. Then, we
design a novel machine learning-enhanced two-stage burst detection approach, which combines
both MID detector and MAQ network classifier for detecting earthquake events. Moreover, based
on the detection results, the approximate location (i.e., province-level) and coordinate location of
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earthquake epicenter can be accurately estimated through standard statistical methods. Finally,
we can release the detection results to the public via emails, messages, search engines, and so on.
Meanwhile, by combining the information from the Government and Seismological Bureau, we
can clarify rumors in time or provide refuge advice through the search engine.
For describing our Q-ERR system, we use Q to denote all search engine queries, represented

as Q = {q1,q2, . . . ,qn }. Each qi denotes a search engine query, which consists of the query text,
time, and location, represented as qi = {texti , ti , li }. In addition, we use Eerr and Efull to de-

note the ERR catalog and the full catalog, respectively, i.e., Eer r = {ee,1, ee,2, . . . , ee,ner r }, Ef ull =
{ef ,1, ef ,2, . . . , ef ,nf ull }. For each earthquake record, it contains the time of occurrence, location of
epicenter and magnitude, i.e., ei = {ti , li ,mi }.
4.2 Representative Query Selection

In the search engine queries Q , there are many queries irrelevant to earthquake events. These
noise queries would disturb earthquake detection. Thus, we propose a pre-processing stage in
this section to select representative queries that are highly correlated with the outbreak of earth-
quakes. First, we select all queries that contain the Chinese keyword “earthquake” from Q to
filter out a huge amount of noise queries. These queries are represented as Qearthquake ∈ Q .
Then, considering the query text is usually very short, the entire query means a specific user
behavior. The word segmentation may destroy this meaning. For example, the word segmen-
tation of “earthquake website” is “earthquake” and “website,” then the term “website” will lose
the significant correlation with the earthquake event. Moreover, the search engine has query

auto-completion (QAC) [15] mechanism, which means that when the users type few words,
the search engine will automatically complete the queries with related existing search queries.
Therefore, a large number of search queries are the same, especially after an earthquake. Fur-
thermore, the experimental results in Section 5 (i.e., Table 10) also prove that the entire query
representation is better than the word segmentation (e.g., single terms), therefore we use the en-
tire query directly as the basic semantic unit, which can reflect user behavior. For the further
investigation and detection, we convert the original formatQear thquake into a text-related stream

format, represented as Qear thquake = {qs1,qs2, . . . ,qsm }, qsi = {{t i1, l i1}, {t i2, l i2}, . . . , {t ini , l ini }}. Each qsi
contains a series of time points, t in , and location, l in , of queries that have the same query text.
Based on this format, the frequency change of each query text can be monitored by time series
methods.
To be specific, we calculated the average frequency ofQear thquake during the occurrence of each

earthquake event in the training set according to the earthquake catalog Eer r , as shown in Figure 5
(note that, here we selected the query texts with top 12 frequency for both pre-earthquake events
and post-earthquake events within 5 min). It can be observed that not all query streams have
significant changes during the earthquake events, which means only a part of queries is highly
correlated with the occurrence of earthquake events. Therefore, here we design a model, Query
Frequency-Frequency Change Rate (QF-FCR), which is inspired by the TF-IDF [57] to find out
representative queries that are highly correlated with the outbreak of earthquakes. To be specific,
QF-FCR is defined as

QF − FCR = freqpost · log
[
f reqpost

f reqpre
· 100

]
, (1)

where f reqpost is the average frequency of one query after the occurrence of earthquake event
within T minutes, and f reqpre is corresponding average frequency before the earthquake event.
QF-FCR considers both frequencies after the event and the change rate during the event, which
can comprehensively measure the importance of the query series to the event detection, and help
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Fig. 5. The average frequency change of search engine queries during earthquake events.

Table 3. The Selected RepresentativeQuery Contents in the First Half of 2015

Query Text pre-Frequency post-Frequency QF-FCR

“earthquake” 12.0 69.6 101.2
“earthquake news today” 10.9 51.4 62.7

“earthquake news” 2.0 22.2 48.2
“China earthquake networks” 2.9 13.1 15.5

“earthquake website” 2.4 11.3 13.7
“China earthquake website” 2.9 13.1 9.9
“where earthquake just” 0.7 4.5 7.2

“earthquake website news” 0.9 2.7 6.7
“just earthquake” 1.2 5.2 6.0

us find out search queries that are highly correlated with the earthquake events. Therefore, in our
system, QF-FCR is only used for pre-analysis of traning set with the earthquake event label (i.e.,
earthquake catalog). In our experiments, we set T = 5 min and used QF-FCR to analyze the train-
ing set, which is the search engine data with earthquake catalog from 2015.01.01 to 2015.06.30.
We selected the top nine queries, which have highest QF-FCR values and do not contain location-

related keywords, as representative queries, represented as Qkey = {qkey1 ,q
key
2 , . . . ,q

key

k
},Qkey ∈

Qear thquake . Specifically, the selected queries are shown in Table 3. Note that, to guarantee the gen-
erality, here we removed the queries that contain location-related keywords, e.g., “Sichuan earth-
quake.” Then, we used these representative query data from testing set (i.e., during 2015.07.01 to
2015.12.31 in our dataset) for earthquake event detection. Additionally, according to the represen-
tative queries, we find that number of queries like “earthquake news,” “earthquake website,” and
“where earthquake just” increases fast after the earthquake, which implies that people would like
to search for relevant authoritative websites and news to obtain detailed information about the
outbreaks. At this time, search engines are usually the best choice of information portals. Mean-
while, nowadays, many search engines have built own news feed system that can index news data
from specific websites within 5 min (e.g., Google News [32] and Baidu News [10]), it is reasonable
for users to search for news about the event that just happened.
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Fig. 6. The different distribution between all earthquake-related queries and representative queries.

After the selection of representative queries, the search frequency has a higher correlation with
the earthquake events and the increase of frequency after the earthquake ismore significant, which
improves the ability to identify the occurrences of earthquake events. Meanwhile, it can also fil-
ter out some search queries far away from the epicenter of earthquakes to improve the locating
performance. Figure 6 shows the effect of representative queries, and the experimental validation
will be introduced in Section 5, Table 11.

4.3 Burst Detection

Based on the representative queries, Qkey , we design a novel machine learning-enhanced two-
stage burst detection approach considering the characteristics of search engine queries. Specifi-
cally, in the first stage, the MID-based detection algorithm is implemented for rapidly capturing
the burst of time series with noise resistance. However, due to the limitation of such rule-based
anomaly detection algorithms [53], there still exist some hidden patterns that cannot be easily de-
tected. To further improve the accuracy of detection results, we need to design some sophisticated
methods for distinguishing the hidden patterns. Therefore, in the second stage, the MAQ network
classifier is further conducted on the preliminary results obtained from the first stage, to improve
the accuracy and robustness of earthquake detection. Meanwhile, because the first stage removes
a majority of non-burst time points and noise bursts, the machine learning method can focus on
the classification task between high-similar earthquake bursts and non-earthquake bursts. Note
that if the method only contains the machine learning stage, then the huge amount of search
engine queries and the extreme unbalance earthquake labels will limit the model efficiency and
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Fig. 7. Two examples of noisy signals that can be detected by the STA/LTA.

effectiveness. Therefore, we propose to combine these twomethods together, which can jointly op-
timize each other to quickly and accurately detect the earthquake bursts in search engine queries.

First Stage: MID Detector. In this stage, we introduce the design of MID detector, which can
rapidly capture the burst of time series with noise resistance. Specifically, we first propose to count
the Qkey to a time series SΔt as follows:

SΔt =
{{
t1, f1
}
,
{
t2, f2
}
, . . . ,

{
tnΔt , fnΔt

}}
, (2)

ti = t0 + i · Δt , (3)

fi =
���{{t , l } |ti−1 ≤ t < ti , {t , l } ∈ Qkey

}��� , (4)

where Δt is the fixed time interval between two adjacent time stamps ti and ti−1, and fi means
the frequency within the ith time interval. Indeed, SΔt shows how the frequency of Qkey changes
over time. After the outbreak of the earthquake, the frequency of representative queries would
increase rapidly and continuously. To monitor this change quickly in huge query data, we propose
to use a derivative STA/LTA detector [44]. However, this kind of detector is usually sensitive to
noisy signals, which is commonly existed in search engine queries data, such as the examples in
Figure 7, where the red lines show the detection time of STA/LTA. Therefore, we design a MID-
based detection algorithm, which can effectively filter noisy signals. Specifically, the MID detector
contains the following procedures.
First, we apply MID to the SΔt for obtaining a series derivative signal D = {Dint }int ∈I :

Dint =
{
dint1 ,d

int
2 , . . . ,d

int
nD

}
, (5)

int ∈ I = {interval1, interval2, . . . , intervalnI } , (6)

dinti = fi+int − fi
(
fi+int , fi ∈ St i

)
, (7)

where int means one interval of derivative in multi-interval I , dinti is the derivative of frequency

in SΔt . Then, for each Dint , we define a characteristic function f inti as

f inti =
dinti − 〈dint 〉i′〈
σ (dint )

〉
i′
, (8)

i ′ = i − int , (9)

where 〈dint 〉i′ and 〈σ (dint )〉i′ mean the time-average and the standard-deviation of Dint , respec-
tively. They are accumulated using the decay constant Cdecay according to these functions:

〈dint 〉i = Cdecay · 〈dint 〉i−1 + (1 −Cdecay ) · dinti , (10)
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(〈σdint 〉i )2 = Cdecay · (〈σdint 〉i−1)2
+ (1 −Cdecay ) · (dinti − 〈dint 〉i )2. (11)

The characteristic series of each Dint are F int = { f inti }, i = 1 . . .nD . Next, we set a list of trig-
ger thresholds, Th = {thint }, int ∈ I , for each F int . When f inti > thint , int ∈ I , the corresponding
trigger time t (i+max (I )) is an anomaly detected by our MID detector. Then, all of the anomalies are

represented as Tmid = {tmid
1 , tmid

2 , . . . , tmid
nmid
}. The trigger thresholds are general increasing and

selected by experiments. Specifically, we select Th=[1.5, 2, 2.5, 3.5] corresponding to I=[1,2,3,4]
in this work. In particular, the multi-interval structure and the increasing thresholds ensure that
only continuously increasing anomalies can be detected, and the false detections of noisy signal
are effectively reduced.

Second Stage: MAQ Network. The MID detector can detect significant bursts in query streams
efficiently. However, as a traditional rule-based detectionmethod, it is difficult to avoid some short-
comings, such as the dependence of threshold-tuning and the difficulty of balancing precision and
recall [53]. Therefore, to further improve the accuracy and the robustness of earthquake detection,
in this stage, we propose a novel machine learning classifier, namely, MAQ (i.e., Multi-level Atten-
tion Query) network, to enhance the detection results of MID detector, Tmid . This classification
task can be defined as follows:
Definition 1.Query-Time-Series Classification.Given a set of time series S , where each si ∈ S

is the frequency time series of one kind of search engine query, and given a set of time points T ,
where each ti ∈ T has a label li for indicating the existence of target event in S at time ti , the
objective is to learn a predictive modelM for classifying time points whether it is the target event,
and the output ofM is the prediction label yi .

To better extract and summarize the patterns of time series, theMAQnetworkmainly consists of
two parts. The first part is the local attention part, which can extract time-series patterns relative to
each time point. This kind of pattern reflects the change at each time point, which is important for
identifying the event burst in time series. We use multi-head attention [70] structure and relative
positional encoding [20] to build this part. The multi-head attention has the ability to capture
the relationships between different time points and the relative positional encoding enables the
attention structure to extract the patterns relative to each time point. Therefore, this part can
generate L pattern representations for multivariate time series of length L. The second part is
the global attention part, which can adaptively summarize these L pattern representations. In this
part, we calculate the global attention scores for each time point through two fully connected
layers with two different dimensions. The first layer aims to summarize within each time point,
and the second layer aims to calculate attention scores from all time points. Then, we weight the L
pattern representations according to the global attention scores to get the final representation. At
last, a fully connected layer and a softmax layer turn the final representation to the classification
result. The whole network structure and the details are shown in Figure 8.
Before the second stage, we use training set (i.e., during 2015.01.01-2015.06.30 in our dataset) to

compute QF-FCR and tune the parameters of MID detector. Here, we use the same data to train
the classifier and the testing set (i.e., during 2015.07.01-2015.12.31 in our dataset) to test. First, we
extract the features of one time point T0 in representative query streams as the input of our MAQ
network. We definewpre andwpost as time windows parameters. As mentioned in the first stage,

SΔt is the summary time-series of Qkey , consistently, the time series of each q
key
i are represented

as sΔti . The features are extracted from both SΔt and {sΔti }, i = 1 . . .k , a total of k+1 time series.
For each time series, we extract { fi |T0 −wpre · Δt < ti ≤ T0 +wpost · Δt } as the features, where fi
means the query frequency at ti and the length of each feature is wpre +wpost . After applying
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Fig. 8. The structure of MAQ network.

Table 4. The Example of Normalized Feature

wpre +wpost

1+k

−0.71 −0.52 −0.71 −0.32 0.08 −0.91 −0.52 0.48 0.48 2.66

−0.70 −0.70 −0.70 0.46 −0.12 −1.28 −0.70 1.05 0.46 2.21
... ...

−0.91 −0.67 −0.55 −0.19 0.05 −1.03 −0.31 0.65 0.41 2.57

Z-score normalization to the features of each time series, all the features are combined for clas-
sifier, represented as F (T0). The shape size of features is (wpre +wpost ) · (1 + k ), as shown in
Table 4.
To be specific, the testing set is set up with the results of MID detector and the label are earth-

quake catalogs. The training set contains two parts. One part is the results of MID detector. We
compare these detection results with earthquake catalog, the successful detected results are treated
as positive samples and the rest of detected results are negative samples. Another part is the time
points of earthquake catalog. For each time point ti of earthquake catalog, we extract features F (ti )
from search engine data. Since not every earthquake can be felt by people, and only the earthquake
that can be felt by people is the detection target of our search engine-based method. For each
time point ti , when the post-earthquake search frequency is greater than the pre-earthquake fre-
quency (i.e., fpost > 1.5fpre ), we regard F (ti ) as a positive example, and take F (ti −wpost · Δt ) as
a corresponding negative example. These two parts jointly construct the training set. In this way,
we can expand the size of the training set and improve the diversity of the training set, which
are beneficial to the model training. In our experiments, we build a training set with 1,330 posi-
tive samples and 2,433 negative samples. Then, we apply the well-trained MAQ network classifier
on F (tmid

i −wpost · Δt ), tmid
i ∈ Tmid and select the results with highest probability as earthquake
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Fig. 9. Time windows selection in location estimation based on the detection results ri .

events, R = {r1, r2, . . . , rnR }. The detection time points are set as tmid
i −wpost · Δt to ensure the

features only use information before the time point of detection.

4.4 Location Estimation

Based on the detection results, we further propose two location estimation methods, i.e., province-
level location and coordinate-level location.

Province-level Location. Intuitively, after the outbreak of earthquakes, people who live near
the epicenter would first feel it and search online. Therefore, we can use location information of
queries to estimate the epicenter of earthquake. We first separate the Qear thquake and Qkey into

Q
p

ear thquake
and Q

p

key
according to province, p. When an earthquake event has been detected at

time ri , the time windows before and after earthquake are [ri − (wpre +wpost ) · Δt , ri −wpost ·
Δt] and [ri −wpost · Δt , ri ], which are represented as twpre and twpost , as shown in Figure 9.

Accordingly, we can count the query frequency of eachQ
p

key
in twpre and twpost as f

p
pre and f

p
post ,

respectively. And the query frequency of each Q
p

ear thquake
in twpre as f

p ′
pre . The change rate of

each province when earthquake occurring can be defined as

Cp =
f
p
post − f

p
pre

f
p ′
pre

, (12)

where f
p ′
pre can reflect the population and the base frequency of search queries of each province.Cp

can eliminate this difference between different cities and find out the province with a remarkable
change of search engine queries related to earthquakes. The province that has the highest value of
Cp is the result of location estimation named PL . In addition, not only the epicenter of earthquake,
we can use Cp to monitor people’s feelings in different areas after earthquakes. The Cp can help
to formulate where and what earthquake information needs to be released, and it is important for
emergency response management.

Coordinate-level Location. Furthermore, we estimate the latitude and longitude coordinates
of the epicenters, which can facilitate the rescue actions in disaster area and accelerate seismic
location processing [65]. In this step, we leverage the GPS coordinates of submitted queries,
Qkey , within the located province, PL , and time window, [ri −wpost · Δt , ri ], denoted by L =
{l1, l2, . . . , lnL }. Generally, after an earthquake, due to the propagation of seismic waves, the re-
sponsive users are usually near the epicenter. Therefore, the coordinate-level location of the earth-
quake epicenter can be estimated by calculating the barycenter of the impact distributions of earth-
quake [65, 79]. The distributions of impact can be estimated from the search engine queries distri-
bution after an earthquake. In one region, the more search engine queries there are, the stronger
the impact of earthquake. Meanwhile, note that the number of search engine queries is not only
related to the impact but also related to the base number of active users. So, we use the distribution
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of search engine queries before an earthquake to calculate the user sparsity coefficient, αi , to elim-
inate the influence of the base number of active users. The larger αi means fewer active users and
a single search query at location li after earthquake can reflect greater impact of the earthquake.
Along this line, we calculate the coordinates of epicenters Ec as

Ec =

∑nL
i=1 αi · li∑nL
i=1 αi

, (13)

where li ∈ L means the latitude and longitude coordinates of ith search engine query after the
earthquake. The sparsity coefficient αi will be described detailly in next subsection.

4.5 Impact Estimation

In the short period after an earthquake, the related news have not yet spread, and the relevant
search queries are usually submitted by people who feel the earthquake. In particular, we define
the impact of earthquake as the people’s feeling of ground shaking in this work. In other words,
the larger impact indicates a larger percentage of people will feel the ground shaking after the
earthquake occurs. Meanwhile, the search engine queries can reflect the distribution of people’s
feelings. Therefore, we can estimate the impact and damage of earthquakes on people from the
search engine queries distribution after an earthquake. Meanwhile, considering that the number
of active users in different regions and different time is different, the number of search queries on
the same impact of the earthquake is also different. So, we propose a coefficient of user sparsity to
eliminate the influence of the base number of active users, namely, αi , which is also used for earth-
quake location estimation. Specifically, considering that related search queries are usually sparse
before an earthquake, we designed a smooth method based on the distance of nearest neighbor
queries to calculate the user sparsity coefficient of a location li . Formally, we calculate αi as

αi =
∑

ln ∈N k (li )

((
l (1)i − l (1)n

)2
+
(
l (2)i − l (2)n

)2) 12
, (14)

where N k (li ) means the k-nearest neighbor set of li before earthquake, and l
(1)
i and l (2)i mean the

longitude and latitude of location li . αi means the sparsity coefficient at li . The larger αi means
fewer active users and a single search query at location li after earthquake can reflect greater
impact of the earthquake. The experimental results of coordinate-level location estimation verifies
the validity of user sparsity coefficient. Then, based on the distribution of search engine queries
after an earthquake and the user sparsity coefficient, we can calculate the earthquake impact index,
θi , in location li as

θi =
∑

|ln−li |<R
αn , (15)

where ln ∈ L means location of search engine query, and αn is the user sparsity coefficient of
location ln . R is the statistical range, which can be flexibly set according to application scenarios. θi
can reflect the impact of earthquake and help to find the disaster-affected area.We use this index to
draw earthquake-impact-map for our system to help emergencymanagement. The Figure 10 shows
an example of earthquake-impact-map from the real-world data, and the dark color means the
severe impact. Furthermore, for evaluating our impact estimationmethod, we compare the impact-
map with the news report [50]. The main impacted cities in the report are shown in Figure 10 as
red dots. It can be seen that our impact estimation can clearly reflect the distribution of impact
and help to find the severe impact area. More experimental results and discussions can be seen in
Sections 5.4 and 6.2.
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Fig. 10. An example of earthquake-impact-map.

Table 5. The Values of Parameters in Our Experiments

Parameter Value

Interval of Time Series (Δt ) 30 s
Multi-Interval of MID detector (I ) [1, 2, 3, 4]
Trigger Thresholds (Th) [1.5, 2, 2.5, 3]
Decay Constant (Cdecay ) 0.98
Pre-window (wpre ) 5
Post-window (wpost ) 5

5 EXPERIMENTAL RESULTS

To validate the performance of our Q-ERR system, in this section, we conduct extensive experi-
ments on our large-scale real-world search engine query data set from China, in 2015, which has
been described in Section 3.

5.1 Experimental Settings

Details of Implementation. The main parameters of the proposed burst detection and location
estimation algorithms are shown in Table 5. For the MAQ network classifier, we set the network
structure parameters as Figure 8. The model was trained with AdamOptimizer [36] and the learn-
ing rate was set as 0.02, decreasing 2% per epoch.

Baseline Methods. To comprehensively validate the performance of our two-stage detector, MID
detector + MAQ network, we compare it with some state-of-the-art baseline methods as follows.

• BD [54], which is one of the state-of-the-art methods for detecting earthquake events on
the Twitter stream with a log-normally-distributed generative model. We set the window
length as 300·Δt and the trigger threshold as 1.5.

• Bitmap detector [73], which is a universal method that does not need to be customized for
individual domains. We set the categorize values as 10, the lagging window size as 400·Δt ,
the future window size as 400·Δt and the chunk size as 2·Δt .

• ExpAvg detector [49], which is a generalized exponential moving average method for time
series anomaly detection. We set the smoothing factor as 0.05 and the trigger threshold as
2.5.

• EARS [8, 25], the Short-termAverage and Long-termAverage (STA/LTA) comparison-
based technique on Twitter stream to detect earthquake events. This method is applied to
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Fig. 11. The workflow of baseline methods and our methods.

an earthquake early warning system in Italy. We set the short term length as 2·Δt , the lang
term length as 2000·Δt , and the trigger threshold as 9.

• K-mean STA/LTA [3], which is one of the state-of-the-art STA/LTA-based method for event
detection on noisy time series data sets. We set the short term length as 2·Δt , the lang term
length as 2000·Δt , the K-mean term length as 100·Δt , the number of K-mean as 10, and the
trigger threshold as 45.

• Derivative detector [44], which is a generalized anomaly detection algorithm that only uses
the first derivative. We set the decay constant as 0.98, and the trigger threshold as 9.

• RF, Bayes, SVM [52], which are a series of widely used non-neural networkmachine learning
methods and have great performance in classification tasks. We adopt the default parameter
settings in Reference [52].

• CNN, LSTM [26, 77], which are a series of widely used neural network machine learning
methods and have great performance in time series classification tasks. In CNN model,
we use two convolution layers with 16 output channels, one max-pooling layer with two
strides, two convolution layers with 8 output channels, and one max-pooling layer with two
strides in order. The kernel size of all convolution layers is set as 1 × 3. In LSTM model, we
set the units number as 16.

• Transformer [70], which is the state-of-the-art sequence model and attract the wide re-
searchers’ attentions. We set the number of heads as 4, the dimension of heads as 8, and the
hidden units of feed forward layer set as 8.

The Figure 11 shows how these baseline methods are employed for detection task. It can be
seen that after processing the search query data into time series format SΔt , baseline detectors
and our MID detector use the same time series as input. Among these baseline detectors, Bitmap
detector, Derivative detector, ExpAvg detector and K-mean STA/LTA can be directly employed to
the time series format data as a time series event detection algorithm. Furthermore, BD and EARS
are social media messages-based methods, which also process social media message data into time
series format for event detection. Therefore, they can be directly employed to time series data for
detection tasks. In the second stage, we extract features F (T0) based on the results of the first stage
for classification task. The baseline classifiers and our MAQ network use the same feature data in
the same training set and testing set.

5.2 Evaluation on Earthquake Detection

Considering the temporal correlation, here we used the data of the first half of 2015 as a training
set, while the rest of 2015 as a test set. Moreover, we also used the training set to select repre-
sentative queries, set parameters and train the classifier. To verify the performance of our method
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Table 6. The Overall Evaluation of Different Methods Based on the ERR Catalog

Method TP FP FN Precision Recall F-measure

BD 7 24 378 0.2258 0.0182 0.0337
Bitmap detector 11 31 374 0.2619 0.0286 0.0516
Derivative detector 44 194 341 0.1849 0.1143 0.1413
ExpAvg detector 40 131 345 0.2339 0.1039 0.1439
EARS 50 89 335 0.3597 0.1298 0.1908
K-mean STA/LTA 64 112 321 0.3636 0.1662 0.2281
MID detector 73 87 312 0.4563 0.1896 0.2679
MID detector + RF 59 51 326 0.5363 0.1532 0.2383
MID detector + Bayes 62 52 323 0.5439 0.1610 0.2485
MID detector + SVM 69 51 316 0.5750 0.1792 0.2732
MID detector + CNN 66 63 319 0.5116 0.1792 0.2654
MID detector + LSTM 62 52 323 0.5439 0.1610 0.2485
MID detector + Transformer 67 59 318 0.5317 0.1740 0.2622
MID detector + MAQ network 70 46 315 0.6034 0.1818 0.2794

Table 7. System Evaluation Based on Different Catalogs

Catalog TP FP FN Precision Recall F-measure

Expanded Full Catalog1 102 14 1938 0.8793 0.0500 0.0946
Full Catalog1 94 22 1226 0.8103 0.0780 0.1423
Expanded Early Warning Catalog 75 41 402 0.6466 0.1572 0.2371
Early Warning Catalog 70 46 315 0.6034 0.1818 0.2794
1Magnitude ≥ M2.0

on ERR task, first, we compared the detection results with the ERR catalog. The performances are
illustrated in Table 6. Unsurprisingly, from the first part of the table, we can observe that MID

detector outperforms all the burst detector baselines. Specifically, BD and EARS are time series
detectors built for social media messages (tweets); Bitmap detector, Derivative detector, ExpAvg
detector, and K-mean STA/LTA are general time series detectors. It can be seen that the general
burst detectors and the detectors of social media are not suitable for search engine queries, and
the MID detector, as the first detector built for search engine queries, fits well with the charac-
teristics of the query data. From the second half of the table, we can observe that MID detector

+ MAQ network consistently outperforms all the machine learning baselines in terms of all met-
rics. The MAQ network has a powerful ability to distinguish specific patterns in query streams.
By comparing MID detector + MAQ network and MID detector, we can find that the MAQ network
classifier can filter out the noise results detected by the MID detector, which significantly increases
the precision and keeps the recall almost unchanged.
As introduced above, it can be seen that the precision metric values in Table 6 cannot reach

high values. The reason for limitation on precision is that the ERR catalog does not contain all
earthquakes due to the rapid reporting pre-defined screening rules, and some earthquakes are felt
by people although the magnitude is small. Therefore, to further validate the effectiveness of our
system, we compared the detection results with various catalogs. Because people generally cannot
feel earthquakes with magnitude less than M2.0 [6], we only used the records of earthquakes
with magnitude larger than M2.0 in the full catalog and the expanded full catalog. The results
are illustrated in Table 7. We find that the precision of our method can achieve 87.9% with the
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Table 8. Performance Evaluation
with Different Magnitude

Magnitude TP Recall

>0.0 70 18.2%
≥2.5 70 18.3%
≥3.0 66 18.7%
≥3.5 39 25.8%
≥4.0 25 30.9%
≥4.5 17 54.8%
≥5.0 9 69.2%
≥5.5 5 100.0%

Table 9. Time Delay of Detection Results After the Occurrence Time of Earthquakes

Interval of Time Series (s)

Detection Delay (s)

percentiles
averange

0.1 0.3 0.5 0.7 0.9

30 128 144 153 167 205 159.5
15 82 92 100 107 174 111.8
9 64 74 78 86 158 91.1
3 36 49 62 96 145 85.4

expanded full catalog, meaning that most of our detection results are earthquakes. Comparingwith
the expanded ERR catalog, we find that there are 27 (23.3%) earthquakes detected by our system
but not released to the public. Intuitively, after these earthquakes, people searched a large number
of earthquake-related queries and want to know the earthquake news. Therefore, to alleviate the
public concerns, these earthquakes should be released to the public, even if they do not achieve the
traditional rapid reporting pre-defined screening rules. Indeed, our system can solve this problem,
through monitoring the impact of earthquakes from the perspective of the people’s feelings, and
promptly releasing relevant information to the public. In the end, the remaining false-positive
results (12.1% of the results) are earthquake-like events or rumors that were felt by people. It
is important to release relevant information in time to avoid public panic and rumors. Relevant
examples and applications will be introduced in the next section.
What should be noted here is that all the performances ofmethods under the Recall metric values

in Tables 6 and 7 cannot reach high values. This is because not all earthquakes in the catalog can
be perceived by the public [54]. Therefore, any ERR system that relies on crowd sensors can only
detect a strict subset of earthquakes in the catalogs. In this situation, the number of earthquakes
our Q-ERR system can detect is larger than other crowd sensors-based systems. Moreover, the
recall value will increase as the earthquake magnitude increases, as shown in Table 8, and when
the magnitude higher than 5.5, the recall can reach 100%. The higher magnitude earthquakes are
easier perceived by the public. However, if the earthquakes occurred in a sparsely populated area,
then even high magnitude earthquakes cannot be felt by people.
Table 9 shows the time delay of our Q-ERR system after the occurrence of earthquakes. We

can find that 50% of successfully detected results can be found within 62 s after earthquake with
3 s interval of time series, and some earthquakes occurred in residential areas can be detected
within 36 s. The reaction speed of search engine queries to earthquake events is faster than
various crowdsourcing data [54, 65], which is beneficial to earthquake rapid reporting. It reflects
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Table 10. Query Preprocessing Evaluation between Single Terms and Entire Query

Preprocessing TP FP FN Precision Recall F-measure

Single Terms 69 100 316 0.4083 0.1792 0.2491
Entire Query 73 87 312 0.4563 0.1896 0.2679

Table 11. Query Preprocessing Evaluation between All EarthquakeQueries and RepresentativeQueries

Preprocessing TP FP FN Precision Recall F-measure

All Earthquake Queries (Qear thquake ) 58 175 326 0.2489 0.1510 0.1880
Representative Queries (Qkey ) 73 87 312 0.4563 0.1896 0.2679

Fig. 12. An analysis of detection results.

the timeliness of the search engine queries, which means the information-seeking behaviors of
people after the earthquakes are very quick. Averagely, people will search for earthquake-related
information within 1 min after the earthquake happened, and many bursts will start even within
30 s after earthquakes. It can be seen that the search engine as crowd sensors can quickly “feel”
the earthquake events by users.
Table 10 shows different performance between different NLP preprocessing of search engine

queries. Obviously, an entire query representation is much better than the single terms. This is
because query auto-completion in search engines makes the queries from different users the same.
Therefore, unlike the complex textual information of microblog, the entire query can be directly
used as the smallest semantic unit. This preprocessing can extract clearer semantic representation
and directly reflect the user’s search behavior.
Table 11 shows different performance between different queries selection preprocessing. Obvi-

ously, as mentioned in Section 4.2, representative queries are better than all earthquake queries.
This is because that search engine is one of the most popular tools for seeking information on the
Internet, and there are many earthquake-related searches in daily life, such as earthquake scien-
tific knowledge, historical earthquakes, and so on. Unfortunately, some important search engine
queries related to the occurrence of earthquakes will be disturbed by these daily searches. In this
situation, our QF-FCR method can help identify search queries that are closely related to earth-
quake occurrence, thereby improving the performance of search engine-based event detection.
Then, we analyze some distributions of detection results on the expanded full catalog, as shown

in Figure 12. Figure 12(a) shows the distribution of earthquakes with different magnitudes in the
detection results. It can be seen that our system can detect many earthquakes with lowmagnitude,
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Table 12. The Details of All False Earthquakes Location Estimations

Estimated Location (PL)
(Latitude and Longitude)

CPL
True Location (PE )

(Latitude and Longitude)
CPE Reason

Liaoning (39.00,121.65) 2.85 Shandong (38.07,120.33) 2.24 offshore earthquake

Hainan (20.10,110.36) 56.5 Guangdong (20.42,110.39) 2.19 boundary
earthquake

Tianjin (39.28,117.80) 12.8 Hebei (39.33,117.93) 7.7 boundary
earthquake

Gansu (32.76,105.25) 0.6 Sichuan (32.66,105.38) 0.4 boundary
earthquake

Table 13. Summary Statistics for the Location Accuracy

Queries for Location

Location Accuracy (km)

Province Accuracy (%)percentiles

0.1 0.3 0.5 0.7 0.9

whithout province location (Qkey ) 34.0 68.4 111.9 191.4 441.9 —

within located province (QPL
key

) 6.0 14.9 25.5 37.6 65.4 95.7

which means people can feel many small earthquakes and hope to get relevant information on the
Internet. According to Figure 3(b), the number of earthquakes increases exponentially with de-
creasing magnitude. Therefore, the number of earthquakes with low magnitude is very large, and
many non-feeling small earthquakes that need not be reported to the public. However, it is diffi-
cult for traditional seismic networks to find which earthquakes can be felt by people, and report
the necessary information to the public. In this situation, our system can detect these earthquake
events, feedback information to users in time, and provide important felt report for emergency
management organizations. Figure 12(b) shows the distribution of detection delay in differentmag-
nitude ranges.We find that the relationship between detection delay andmagnitude is not obvious,
and some delays are large, because the earthquake epicenter is far away from the residential area.

5.3 Evaluation on Location Estimation

Because our search engine queries were mainly submitted from China mainland, here we only
estimated the earthquake epicenters in China mainland. Specifically, we used the TP results with
the full catalog to estimate location. As a result, our system can achieve 95.7% accuracy in province
location, and only four earthquakes were estimated false. Table 12 shows the details of all false
earthquakes, which mainly compares the estimated location and the epicenter location. It can be
seen that these false estimated locations are all adjacent to the earthquake epicenters, and the true
locations are all listed as the top two results with high Cp value. In this case, our system actually
detected the region where people feel the earthquake, and we should not only warn the province
where the earthquake happened but also release information to other provinces with strong
people’s feelings. Indeed, through the location estimation, our system can help to reflect the
people’s feeling earthquake intensity in different provinces and help the emergency management.
Then, we performed coordinate-level location estimation without province-level location and

within located province, separately. The results are illustrated in Table 13. We can observe that the
accuracy of coordinate-level estimation based on the province-level estimation is better. It is due
to that the province-level location has filtered out the noise queries in irrelevant provinces, so that
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Table 14. The Location Accuracy with Impact Estimation

Method of Impact Estimation
Location Accuracy (km)

percentiles
0.1 0.3 0.5 0.7 0.9

Benchmark 9.1 28.4 44.5 69.5 131.0
Our Method 6.0 14.9 25.5 37.6 65.4

Fig. 13. Result analysis of location estimation.

Fig. 14. Spatial distribution of search queries just after earthquake.

the location algorithm can focus on the region around the epicenter and improve the accuracy.
There are 50% of successful results located within 25.5 km, and some earthquakes occurred in
residential areas can be detected within 6 km. According to the results, the location accuracy based
on search engine is better than various other crowdsourcing data [65]. This is because the number
of search engine users is huge and the coverage is wide [18, 72], and the search behavior after
the earthquake can fully reflect the impact of the earthquake. The results of search engine-based
location can not only help the emergency management but also accelerate the information release
for felt earthquakes [65].
Moreover, we analyze the distribution of location results to discover the characteristics of search

engine-based locating method, as shown in Figures 13 and 14. First, Figure 13(a) shows theCp val-
ues (as mentioned in Equation (12)) of felt earthquake events with different magnitude, and the
high-magnitude earthquakes usually have high Cp values, which means more sharp change of
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search frequency around the occurrence of earthquakes. Second, we show the distributions of lo-
cation accuracy in different magnitude region. Interestingly, the location results of low-magnitude
felt earthquakes are usually more accurate than that of high-magnitude felt earthquakes, that is,
search engine-based locating has better performance for low-magnitude earthquakes. This is be-
cause the number of searches is small after low-magnitude earthquakes but the spatial distribution
is more concentrated around the epicenter. An example is shown in Figure 14, which illustrates
the spatial distribution of search engine queries within 5 min after the earthquake. We compare
the search query distributions of earthquakes with different magnitudes between Figures 14(a) and
14(b). It can be seen that the large earthquake usually can impact several towns and the people
will search for related information online. In this case, the earthquake locating is easily disturbed
by the distribution and the population of towns. Conversely, some small earthquakes usually can
only impact the people near the epicenter, which is easy for locating where earthquakes occurring.
Therefore, the users of search engine can be regarded as earthquake monitoring sensors densely-
deployed in residential areas, which can make up the deficiencies of traditional seismic networks,
such as the significant investment and high maintenance cost of dense networks, and the difficulty
of deploying in residential areas.

5.4 Evaluation on Impact Estimation

Because of the difficulty of collecting people’s felt report of ground shaking, there is usually no
official standard results for evaluating the impact distribution methods [6, 14], especially in China.
Therefore, instead of directly verifying the results of impact estimation, here we propose an alter-
native metric for this task bymeasuring the distance between the barycenter of impact distribution
and the epicenter of earthquake. The smaller distance indicates better performance of impact es-
timation method. The motivation behind is that the earthquake waves propagate from the source
and the shake amplitude will decrease with distance, so the center of earthquake impact should to
close to the epicenter [65]. Meanwhile, we also compared a state-of-the-art method [14, 65] (i.e.,
the benchmark in the Table 14), which uses crowdsourcing data as the felt map for earthquake
epicenter location. It can be seen that our method is significantly better than the benchmark and
more reasonably reflect the distribution of earthquake impact. Furthermore, our method can pro-
vide quantified impact distributions, which can help government to conduct effective information
release and emergency management.

6 DISCUSSION AND APPLICATION

In this section, we will discuss various interesting findings in the experimental results through
case studies, and introduce the potential applications of our Q-ERR system. Figure 15 shows some
cases of our results, the red lines are the occurrence of earthquakes and the yellow lines are our
detection results.

6.1 Case Studies

The public search without earthquake occurrence. Sometimes people may mistakenly think
that there is an earthquake occurs due to various reasons, such as an artificial explosion. If the
safety information cannot be released in time, then the panic and rumors will spread in public.
As shown in Figure 16, although people think there was an earthquake but actually did not, and
Figure 15(a) shows the query distribution during this earthquake-like event. Our system can mon-
itor people’s feelings and detect this kind of event. In Figure 15(a), we can find that the search of
queries related to this event increases rapidly and the yellow line is when we successfully detect it.
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Fig. 15. Case studies of our experimental results.

Fig. 16. The news about “No Earthquake.”

In this case, we can check the information of the seismic observation networks and release safety
information to people timely to eliminate the social panic and rumors.

Earthquake occurrence without the public search. Even some earthquakes have high magni-
tudes, peoplemight not perceive them. As shown in Figure 15(b), the red line is when an earthquake
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with magnitude M5.3 occurred, but nearly no significant change of search queries frequency. This
is because the earthquake occurred in a sparsely populated area of Qinghai province and it was
difficult to be perceived by people. Therefore, some specific earthquakes cannot be detected by our
search engine queries-based ERR system.

The public search without rapid reporting. There were some low-magnitude earthquakes that
were not released to the public, because they did not achieve the traditional rapid reporting pre-
defined screening rules. However, the public perceived the earthquake, which can be detected in
search engine queries. As shown in Figure 15(c), this is an M2.1 earthquake, but with a signifi-
cant change of queries frequency. Therefore, the information about weak earthquakes should be
released to the public in this kind of case. Comparing Figures 15(c) and 15(b), we can find that the
magnitude sometimes cannot reflect people’s real feelings of earthquakes, while traditional rapid
reporting system may miss some earthquakes that people want to know. Our system can reflect
people’s feelings and make ERR system more comprehensive.

The public search about historical earthquake.When memorial events or news reports about
historical earthquakes, related search queries will be greatly improved. Without filtering search
queries containing “earthquake,” it will cause great interference to real-time earthquake detection.
As shown in Figure 15(d), search queries related to historical earthquakes bury the information
related to real-time earthquakes. Indeed, this result motivates us to select representative queries
for reducing noise in earthquake detection.

Rumors after earthquake occurrence. For some earthquakes, if the rapid reporting system
cannot release the corresponding information according to people’s feelings, it will cause social
panic and rumors. As shown in Figure 15(e), this is an M8.0 earthquake in Japan. People in China
had clear feelings about this earthquake, and the rumor, “9.10 magnitude earthquake will occur in

Sichuan,” began to increase quickly around 7 min after the earthquake. This is because the feeling
of this earthquake was particularly strong in Sichuan due to some geological reasons, and the
traditional rapid reporting system only releases information about the earthquake in Japan. People
were difficult to determine the source of the earthquake feelings in Sichuan, then, the rumors began
to spread. The earthquake queries frequency distribution in Figure 15(f) shows that the queries
frequency in Sichuan far surpassed other cities after the earthquake. The location estimation of
this earthquake is Sichuan, so we could find this abnormality in time and release corresponding
information in Sichuan to eliminate rumors and panic.

6.2 Applications

Based on the experimental results and case studies of the results, we can find that our Q-ERR
system could better satisfy the needs of people about earthquake reporting compared to the tra-
ditional ERR system. The earthquake information our system detected can be released to people
via SMS, email, app, and so on. In addition, according to the characteristics of search engines, we
can feedback earthquake information directly to people through the search engine. For example,
after our system detects an earthquake event when people search earthquake-related queries on-
line, our system can display the information about the earthquake-impact-map, situation of her
province, and the actual epicenter of the earthquake in the search results, and it can give some
suggestions to avoid damage, as shown in Figure 17. This way can directly respond to the people’s
search, accurately and timely. According to the results of detection and the ways of reporting, the
search engine applications of our system mainly include the following four aspects:

Powerful earthquake felt by people. When a powerful earthquake occurs and is perceived by
the public, our system can detect people’s information-seeking behaviors in time and combine
the location estimation information to release the warning information and suggestions to the

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 37. Publication date: May 2021.



Exploiting Real-time Search EngineQueries for Earthquake Detection 37:27

Fig. 17. Application: Feed back information directly when the earthquake query burst occurs.

public, as shown in Figure 17(a). Moreover, some powerful earthquakes affect not only the province
where earthquakes happened but also neighboring provinces. Our system can release earthquake
warnings to these provinces. And the earthquake-impact-map can help authorities to find the
severely impacted region. Note that, as shown in Figure 17(a), the severely impacted region is not
necessarily the region close to the epicenter of the earthquake. This kind of phenomenon is due to
many underlying factors, such as geological structure, urban architecture, population distribution
and so on. Our searching engine-based method can find these severely impacted regions, and thus
help the emergency management.

Weak earthquake felt by people. Sometimes people can perceive some weak earthquakes that
do not achieve the traditional rapid reporting pre-defined screening rules in the seismic observa-
tion networks, but these earthquakes can be detected by our ERR system. Then, we can timely
release the earthquake information to the public to avoid social panic, as shown in Figure 17(b). In
this case, the earthquake-impact is mainly around the earthquake epicenter.
Earthquake-like event felt by people.Occasionally our system can detect the people-perceived
earthquake events from the search engine queries, but they are not detected by official seismic
observation networks. The earthquake-impact-map also shows that the distribution of impact is
similar to aweak earthquake. In this case, people are eager to knowwhether earthquakes have hap-
pened, we can combine the result of seismic networks and the location estimation to release safety
information to the public, eliminate the rumors and reassure people, as shown in Figure 17(c).
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Earthquake-related event felt by people. Sometimes people can feel some shakes and won-
der whether they come from a local earthquake and whether there will be aftershocks, while
these shakes come from the earthquake in other cities or countries. In this case, the risk of af-
tershocks in local is low, and reporting the safety information to the public in time is important.
The earthquake-impact map shows that many people concern this earthquake-related event likely
a large earthquake. Our system can detect this kind of earthquake-related event, and feedback-
related information to the public, as shown in Figure 17(d).

6.3 Detection Region

It is more robust, fast, and accurate to detect earthquake events using the data at the country level
than using the data at the province level. When we conduct burst detection for each individual
region, the queries are too sparse to be used for extracting stable burst patterns and training ro-
bust machine learning models, so the detection is sensitive to noise bursts and easy to misreport.
Thus, we directly use the country level data for detection and estimate location following. Our
preliminary experiments confirmed the above conclusions, e.g., in Sichuan province, the precision
of burst detection in ERR catalog is 35.0%, which is lower than 45.6% in Table 6.

6.4 Advantages of System

The search engine-based detection method and the traditional seismic monitoring methods are
mutually reinforcing. In many regions of the world where the seismic monitoring equipments
are limited and the publication of seismic information is slow, search engine-based methods can
be deployed quickly and accelerate the publication in a cost-efficient manner. Moreover, in re-
gions with advanced seismic monitoring systems, search engine-based methods can detect the
earthquake events of social concern and the impact of earthquakes on people. Then, through our
Q-ERR system, relevant information can be timely provided to our users for alleviating the pub-
lic concerns and refuting rumors. Meanwhile, the distribution of earthquake-impact can provide
important assistance for the authorities in emergency management and disaster relief.

7 CONCLUSION

In this article, we introduced a large-scale and systematic study on exploiting real-time search en-
gine queries for outbreak event detection, with a focus on earthquake rapid reporting. In particular,
we proposed a realistic Q-ERR system for real-time earthquake detection through monitoring mil-
lions of queries related to earthquakes from a dominant online search engine in China. Specifically,
we first investigated a large set of queries for selecting the representative queries that are highly
correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected
queries, we designed a novel machine learning-enhanced two-stage burst detection approach con-
sisting of the MID detector and the MAQ network for detecting earthquake events. Meanwhile,
the approximate location (i.e., province-level) of the earthquake epicenter can be accurately es-
timated. Finally, through the extensive comparison with earthquake catalogs from CENC, 2015,
the detection Precision of our system can achieve 87.9%, and the Accuracy of location estimation
can achieve 95.7%. In particular, 50% of successfully detected results can be found within 62 s after
earthquake, and 50% of successful locations found within 25.5 km of epicenter. Our system also
found more than 23.3% extra earthquakes that were felt by people but not publicly released, 12.1%
earthquake-like special outbreaks, and meanwhile, revealed many interesting findings such as the
typical query patterns of earthquake rumor and regular memorial events. Based on these results,
our system can timely feed back information to the search engine users according to various cases
and accelerate the information release for felt earthquakes.
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